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1 IntroductionIn this article, we show that small perturbations of equilibrium states in fer-romagnetic media give rise to standing and traveling waves that are stable forlong times. The evolution of the wave pro�les is governed by semilinear heatequations.These results are obtained in the framework of micromagnetics|a contin-uum approximation that allows the calculation of magnetization phenomenaon a length scale intermediate between the size of a magnetic domain and themean distance between crystal lattice sites. The basic variable is the magne-tization vector, which is assumed to vary continuously with position and de-scribes the magnetization structures and reversal mechanisms in the medium.Its dynamics are those of a spinning top driven by the local e�ective magnetic�eld, subject to damping. The dynamic equation was �rst formulated by Lan-dau and Lifshitz [1] and later given in an equivalent form by Gilbert [2]. Theequation is complemented by Maxwell's equations for the electromagnetic �eldvariables [3]. The Landau{Lifshitz{Maxwell equations admit an equilibriumsolution, where the magnetization is uniform and everywhere parallel to thee�ective magnetic �eld. In this article, we are interested in small perturba-tions of such equilibrium states. The size of the perturbations is measured bya small parameter ". The complete mathematical model is given in Section 2.The system of partial di�erential equations that governs the spatio-temporalevolution of the perturbations belongs to a general class of hyperbolic equa-tions for vector-valued functions, which we analyze in detail in Section 3. Usingformal expansion techniques, we show that the equation admits an asymptoticsolution that exhibits standing and traveling waves. The wave pro�les evolveon a slow time scale (measured in units of "�1) according to a semilinear heat2



equation. Using analytical techniques inspired by nonlinear optics, we thenshow that the asymptotic solution approaches the exact solution of the hyper-bolic equation in the limit as " # 0. The main result for the general case isstated in Theorem 3.1 (Section 3.3).The derivation of the asymptotic solution and the proof of the conver-gence theorem require several hypotheses, which are satis�ed in the case ofthe Landau{Lifshitz{Maxwell model. The application is discussed in Section 4.We �nd that the magnetization as well as the electromagnetic �eld variablesdevelop standing waves and up to four traveling waves, whose speed of propa-gation varies with the equilibrium state. The asymptotic solution generalizesthe expansion developed in [4].Section 5 contains numerical results that show the standing and travelingwaves. They also con�rm the analytical result that the waves are stable fortimes of the order of "�1.2 Mathematical ModelThe state of a ferromagnet is described by the magnetization vector M . Theevolution of M with time (t) is governed by the Landau{Lifshitz (LL) equa-tion [1], @tM = �(M �H) � gjM j (M � (M �H)) : (2.1)This is the equation of a spinning top driven by the magnetic �eld H andsubject to damping; the constant g is the (dimensionless) damping coe�cient.Note that the magnitude jM j of M is an invariant of the motion. The electro-magnetic �eld variables obey Maxwell's equations [3],@tH �r�E = �@tM; (2.2)3



@tE +r�H = 0: (2.3)The equations are in dimensionless form, and the coe�cients have been setequal to one. The spatial domain is all of R3.2.1 Basic SolutionThe system of Eqs. (2.1){(2.3) admits a family of constant solutions,(M;H;E)� = (M0; ��1M0; 0); � > 0: (2.4)Here, M0 is an arbitrary vector in R3; without loss of generality, we mayassume that jM0j = 1. We are interested in the spatio-temporal evolution oflong-wave perturbations of such solutions. The perturbations are measured interms of an arbitrarily small positive parameter " and have the formM(x; t) =M0 + " ~M(~x; ~t; � ); (2.5)H(x; t) = ��1M0 + " ~H(~x; ~t; � ); (2.6)E(x; t) = " ~E(~x; ~t; � ); (2.7)where ~M , ~H, and ~E are O(1) as " # 0, and~x = "x; ~t = "t; � = "2t: (2.8)If the triple (M;H;E) is a solution of Eqs. (2.1){(2.3), then ~M , ~H, and ~Emust satisfy the system of equations"@~t ~M + "2@� ~M = �(M0 � ~H) + ��1(M0 � ~M )� "( ~M � ~H)� gjM j hM0 � (M0 � ~H)� ��1M0 � (M0 � ~M) + "(M0 � ( ~M � ~H)+ " ~M � (M0 � ~H)� "��1 ~M � (M0 � ~M) + "2 ~M � ( ~M � ~H)i ; (2.9)"@~t ~H + "2@� ~H � "( ~r� ~E) = �"@~t ~M � "2@� ~M; (2.10)"@~t ~E + "2@� ~E + "( ~r� ~H) = 0: (2.11)4



Here, we have reduced the powers of " by one everywhere. Furthermore, inEq. (2.9), we have left the term jM j in the denominator without expanding it.This term introduces complications that are merely technical and nonessentialfor the arguments to be presented. To avoid these complications entirely, wewill change the model slightly: we replace the term jM j by jM0j, which is 1,and thus reduce the factor multiplying the damping term to g.We are interested in solutions of Eqs. (2.9){(2.11) that describe planewaves propagating in the direction of ~k, a �xed unit vector in R3 that is notparallel or antiparallel to M0. Since variations occur only in the direction of~k, we may make the substitution ~r = ~k@~x; (2.12)if ~x is the coordinate in the direction of ~k. Henceforth, we omit the tilde, sothe equations to be considered are"@tM + "2@�M = �(M0 �H) + ��1(M0 �M)� "(M �H)� g [M0 � (M0 �H) � ��1M0 � (M0 �M) + "M0 � (M �H)+ "M � (M0 �H)� "��1M � (M0 �M) + "2M � (M �H)] ; (2.13)"@tH + "2@�H � "k � @xE = �"@tM � "2@�M; (2.14)"@tE + "2@�E + "k � @xH = 0: (2.15)2.2 Vector FormulationThe system of Eqs. (2.13){(2.15) can be written as a single equation for afunction U : R� [0;1)� [0; T ]! R9 = R3 �R3 �R3,U(x; t; � ) = 0BBBBB@ ��1=2M(x; t; � )H(x; t; � )E(x; t; � ) 1CCCCCA ; x 2 R; t � 0; � 2 [0:T ]: (2.16)5



The factor ��1=2 is introduced for convenience, so the problem has certainsymmetry properties (see Section 2.3). After dividing once more by ", weobtain the following equation for U :@tU + "@�U +A@xU + "�1(L0 + L1)U = B(U;U) + "T (U;U;U); (2.17)where A, L0, and L1 are linear operators in R9,Au = 0BBBBB@ 0 0 00 0 �k � �0 k � � 0 1CCCCCA0BBBBB@ u1u2u3 1CCCCCA ; (2.18)L0u = 0BBBBB@ ���1(M0 � �) ��1=2(M0 � �) 0��1=2(M0 � �) �(M0 � �) 00 0 0 1CCCCCA0BBBBB@ u1u2u3 1CCCCCA ; (2.19)L1u = g0BBBBB@ ���1M0 � (M0 � �) ��1=2M0 � (M0 � �) 0��1=2M0 � (M0 � �) �M0 � (M0 � �) 00 0 0 1CCCCCA0BBBBB@ u1u2u3 1CCCCCA ; (2.20)B is a bilinear map on R9 �R9,B(u; v) = 0BBBBB@ B1(u; v)��1=2B1(u; v)0 1CCCCCA ; (2.21)withB1(u; v) = �12(u1 � v2 + v1 � u2)� 12gM0 � (u1 � v2 + v1 � u2))� 12g[(u1 � (M0 � (v2 � ��1=2v1))) + (v1 � (M0 � (u2 � ��1=2u1)))];and T is a trilinear map on R9 �R9 �R9,T (u; v; w) = �1=2g 0BBBBB@ T1(u; v; w)��1=2T1(u; v; w)0 1CCCCCA ; (2.22)6



withT1(u; v; w) = 16[u1 � (v2 �w1) + u1 � (w2 � v1) + w1 � (v2 � u1)+ v1 � (u2 �w1) + v1 � (w2 � u1) + w1 � (u2 � v1)]:Here, u, v, and w are arbitrary vectors in R9, u = (u1; u2; u3)t, v = (v1; v2; v3)t,and w = (w1; w2; w3)t with ui; vi; wi 2 R3, i = 1; 2; 3.Equation (2.17) must be satis�ed for all x 2 R, t > 0, and � 2 [0; T ].2.3 Auxiliary PropertiesSince the vector product is antisymmetric, the operator A is symmetric withrespect to the usual scalar product in R9,Au � v = u �Av; u; v 2 R9: (2.23)The operators L0 and L1 are antisymmetric and symmetric, respectively, withrespect to the scalar product in R9,(L0u) � v = �u � (L0v); (L1u) � v = u � (L1v); u; v 2 R9: (2.24)The bilinear map B is symmetric, B(u; v) = B(v; u) for all u; v 2 R9, and thetrilinear map T is symmetric in the sense that T (u; v; w) = T (�(u; v; w)) forall u; v; w 2 R9 and any permutation �.Lemma 2.1 The operator L0 + L1 induces an orthogonal decomposition,R9 = ker(L0 + L1)� im(L0 + L1): (2.25)Proof. The symmetry properties of L0 and L1 imply that ((L0 + L1)u) � v =�u � (L0v)+u � (L1v) for any u; v 2 R9. A straightforward computation shows7



that ker(L0) = ker(L1) = ker(L0+L1), so ((L0+L1)u) � v = 0 for any u 2 R9,v 2 ker(L0 + L1).The kernel and image of L0 + L1 are given explicitly byker(L0 + L1) = fv = (v1; v2; v3)t 2 R9 : (��1=2v1 � v2)�M0 = 0g; (2.26)im(L0 + L1) = fv = (v1; v2; v3)t 2 R9 : v1 �M0 = 0; v2 = ��1=2v1; v3 = 0g:(2.27)Let P and Q be the orthogonal projections on ker(L0 + L1) and im(L0 + L1),respectively, and let R be the inverse of L0 + L1 on im(L0 + L1), triviallyextended to R9. ThenR(L0 + L1) = (L0 + L1)R = I � P = Q: (2.28)Furthermore, if (L0+L1)u = v for some u; v 2 R9, then Pv = 0 and Qu = Rv.The following lemma is veri�ed by direct computation.Lemma 2.2 (i) The operator L1 is coercive on im(L0 + L1),(L1Qv) � (Qv) = g(1 + ��1)(Qv) � (Qv); v 2 R9: (2.29)(ii) The maps B and T are transparent on ker(L0 + L1),PB(Pu; Pv) = 0; PT (Pu; Pv; Pw) = 0; u; v; w 2 R9: (2.30)3 A General Hyperbolic EquationEquation (2.17) is a special case of the general di�erential equation@tU + "@�U +A@xU + "�1LU = B(U;U) + "T (U;U;U) (3.1)8



in Rn (n � 1), where A is a symmetric linear operator, L a linear operator, Ba symmetric bilinear map, and T a symmetric trilinear map. In this section weconsider Eq. (3.1); the application to the special case of Eq. (2.17) follows inSection 4. Our procedure is as follows. First, we construct an asymptotic solu-tion of Eq. (3.1) using formal power series expansions in the small parameter "(Section 3.1). Then we give precise asymptotic estimates of the various termsin the asymptotic solution (Section 3.2). Finally, we show that the asymptoticsolution actually converges to the solution of Eq. (3.1) on the slow time scaleas " # 0 (Section 3.3).3.1 Formal ExpansionWe �rst take an asymptotic approach to Eq. (3.1) and look for a solutionU � U(x; t; � ) of the formU � �U1 + "U2 + "2U3 + � � � � ; (3.2)proceeding formally by substituting, expanding, and equating the coe�cientsof like powers of ". The underlying assumption is that U1 = O(1), "U2 = o(1),and "U3 = o(1) as " # 0 [5, 6]. The construction requires three hypotheses.Hypothesis 1 Rn = ker(L)� im(L).Hypothesis 2. (Lu) � u � CkQuk2 for all u 2 Rn, for some C > 0.Hypothesis 3 PB(Pu; Pv) = 0 and PT (Pu; Pv; Pw) = 0 for allu; v; w 2 Rn.Here, P and Q are the orthogonal projections on ker(L) and im(L), respec-tively. The hypotheses are satis�ed in the case of Eq. (2.17). Hypothesis 39



is commonly referred to as the transparency property, a term borrowed fromnonlinear optics [7].Let R be the partial inverse of L on im(L), trivially extended to all of Rn.Then RL = LR = Q. The proof of the following lemma is trivial.Lemma 3.1 If Lu = v for some u; v 2 Rn, then Pv = 0 (solvability condi-tion) and Qu = Rv.The equation of order O("�1). The equation isLU1 = 0; (3.3)so QU1 = 0, and, therefore, U1 = PU1: (3.4)The equation of order O(1). The equation isLU2 = V2(U1) = B(U1; U1)� (@t +A@x)U1: (3.5)Because U1 = PU1 and B is transparent on ker(L) (Hypothesis 3), the solv-ability condition PV2 = 0 reduces to(@t + PAP@x)U1 = 0: (3.6)The operator PAP is symmetric, so there exist k projections Pj and k numbersvj (j = 1; : : : ; k, k � n) such thatP = kXj=1Pj ; PAPPj = vjPj; j = 1; : : : ; k: (3.7)Hence, the solvability condition is met if(@t + vj@x)PjU1 = 0; j = 1; : : : ; k: (3.8)Because U1 = PU1 and R = 0 on ker(L), the equation QU2 = RV2 reduces toQU2 = RB(U1; U1)�RA@xU1: (3.9)10



Remark. The numbers vj can be characterized in terms of the characteristicvariety X = f(!; �) 2 C � R : det(�i! + iA� + L) = 0g of the operator@t + A@x + L. Since L is not invertible, (0; 0) 2 X. Suppose that (0; 0) is anisolated singular point of X. Then there exist k functions !j (j = 1; : : : ; k,k � n) satisfying !j(0) = 0 that describe X in the neighborhood of (0; 0), andvj = !0j(0) [8].The equation of order O("). The equation isLU3 = V3(U1; U2) = 2B(U1; U2)+T (U1; U1; U1)�@�U1� (@t+A@x)U2: (3.10)Because U1 = PU1 and T is transparent on ker(L) (Hypothesis 3), the solv-ability condition PV3 = 0 reduces to@�U1 + @tPU2 + PA@xU2 = 2PB(U1; U2): (3.11)We rewrite this condition, using Eq. (3.9) and the transparency of B on ker(L),@�U1 + (@t + PAP@x)PU2 � PARAP@2xU1 = 2PB(U1; RB(U1; U1))� PAR@xB(U1; U1)� 2PB(U1; RA@xU1): (3.12)This equation represents a system of k equations,@�PjU1 + (@t + vj@x)PjU2 � PjARA kXi=1 @2xPiU1 = 2PjB(U1; RB(U1; U1))� PjAR@xB(U1; U1)� 2PjB(U1; RA@xU1); j = 1; : : : ; k: (3.13)The jth equation involves the rate of change of PjU1 on the slow (� ) timescale, as well as the rate of change of PjU2 along the characteristic determinedby vj on the regular (t) time scale. We can separate these two e�ects if U2satis�es a sublinear growth condition,limt!1 1t kU2(� ; t; � )kHs = 0; (3.14)11



uniformly on [0; T ], for some su�ciently large s. (Hs is the usual Sobolev spaceof order s.) The condition (3.14) implies, in particular, that "kU2kHs = o(1) as" # 0. The separation is accomplished by averaging over t along characteristics.Formally, Gvu(x; t) = limT!1 1T Z T0 u(x+ vs; t+ s) ds; v 2 R; (3.15)whenever the limit exists. The following lemma is taken from [6, Lemmas 3{6].Lemma 3.2 (i) If (@t + v@x)u = 0, then Gv0u exists for all v0; Gv0u = u ifv0 = v, and Gv0u = 0 otherwise.(ii) If (@t+v@x)u = 0 and (@t+v0@x)u0 = 0, then Gv00(uu0) = uu0 if v00 = v0 = v,and Gv00(uu0) = 0 otherwise.(iii) If u satis�es a sublinear growth condition, limt!1 t�1ku(� ; t)kL1 = 0,then Gv(@t + v@x)u exists, and Gv(@t + v@x)u = 0.The application of Gvj to both sides of Eq. (3.13) eliminates the transportterm and reduces the equation to@�PjU1 � PjARAPj@2xPjU1 = 2PjB(PjU1; RB(PjU1; PjU1))� PjAR@xB(PjU1; PjU1)� 2PjB(PjU1; RA@xPjU1): j = 1; : : : ; k: (3.16)The operator PjARAPj is nonnegative, because of Hypothesis 2, and propor-tional to Pj , PjARAPj = DjPj; (3.17)where Dj is a scalar, Dj � 0. (In fact, Dj = 12!00j (0) [8].) The solvabilitycondition PV3 = 0 thus yields a system of k di�usion equations on the slow(� ) time scale, (@� �Dj@2x)PjU1 = Fj(PjU1); j = 1; : : : ; k; (3.18)12



where Fj(PjU1) = 2PjB(PjU1; RB(PjU1; PjU1))� PjAR@xB(PjU1; PjU1)� 2PjB(PjU1; RA@xPjU1):Furthermore, if we use Eq. (3.16) to eliminate the � derivative in Eq. (3.13), we�nd that the solvability condition PV3 = 0 also yields a system of k transportequations for PjU2 on the regular (t) time scale,(@t + vj@x)PjU2 = Sj(U1); j = 1; : : : ; k; (3.19)whereSj(U1) = PjARA kXi=1;i 6=j @2xPiU1+ 2Pj [B(U1; RB(U1; U1))�B(PjU1; RB(PjU1; PjU1))]� PjAR@x[B(U1; U1)�B(PjU1; PjU1)]� 2Pj [B(U1; RA@xU1)�B(PjU1; RA@xPjU1)]:If Eqs. (3.18){(3.19) are satis�ed, then QU3 = RV3. The equation reduces toQU3 = 2RB(U1; U2)�R@tU2 �RA@xU2: (3.20)This is as far as we go with formal asymptotic analysis. We summarize theresults of the analysis in a lemma.Lemma 3.3 If U2 satis�es the sublinear growth condition (3.14), then U1 =Pkj=1 PjU1, where each PjU1 satis�es a homogeneous transport equation on theregular (t) time scale (Eq. (3.8)), and an inhomogeneous heat equation on theslow (� ) time scale (Eq. (3.18)).Remark. It is interesting to compare the present results with those ob-tained for the case where the operator L is real antisymmetric, which has been13



studied extensively in nonlinear optics [5]{[13]. The asymptotics of Eq. (3.1)are intimately connected with the characteristic variety X = f(!; �) 2 C �R : det(�i! + iA� + L) = 0g of the operator @t + A@x + L. For exam-ple, plane-wave initial data lead to superpositions of modulated plane wavesexp(i"�1(kj � x � !jt)), provided (!j; kj) is a regular point of X [9, 10]. Theasymptotic solutions are valid on time intervals of the order O(1) as " # 0(geometrical optics). On the slow (� ) time scale, the dispersive e�ects ofdi�raction come into play. Generically, if (0; 0) 2 X, a mean �eld is created(recti�cation e�ect) that evolves according to a nonlinear Schr�odinger equa-tion [5, 6]. If (0; 0) is a singular point of X, a long-wave asymptotic analysisyields Korteweg{de Vries equations, where the dispersive phenomena are de-scribed by third-order di�erential expressions [11]. A similar situation arisesin the water-wave problem, where the long-wave limit yields two counterprop-agating waves, each described by a Korteweg{de Vries equation [14, 15].In the case considered here, L has a symmetric component, and the eigen-values ! are generally complex. Waves described by an expression of the formexp(i"�1(k �x�!t)) decay or grow exponentially as t!1, so the proofs given,for example, in [6] no longer apply, nor can they be adapted. As in [7, 12, 13],stability on the slow time scale results from the transparency of B. Neverthe-less, it is remarkable that the asymptotic behavior of a reversible system isdescribed by a system of irreversible equations.3.2 Asymptotic EstimatesFor the convergence proof in the next section, we need asymptotic estimates ofthe coe�cients U1, U2, and U3. The estimates require an additional hypothesis.Hypothesis 4. Either Dj > 0, or, if Dj = 0, both terms involving x deriva-14



tives in Fj (Eq. (3.18)) are zero, j = 1; : : : ; k.Our �rst concern is the existence and uniqueness of U1.Lemma 3.4 For any U01 2 Hs(R) (s � 1) satisfying the condition U01 = PU01 ,there exists a T > 0 and a unique function U1 2 Ck([0;1)� [0; T ];Hs�2k(R))such that U1 = Pkj=1 PjU1, where the functions PjU1 satisfy Eqs. (3.8) and(3.18). Furthermore, U1(� ; 0; 0) = U01 .Proof. Let u0j = PjU01 . Because of Hypothesis 4, there exists a Tj > 0 and aunique solution uj 2 Ck([0; Tj];Hs�2k(R)) of Eq. (3.18) such that uj(0) = u0j .Take T = minfTj : j = 1; : : : ; kg. Then the function U1 de�ned by theexpression U1(x; t; � ) = kXj=1uj(x� vjt; � ); x 2 R; t � 0; � � 0;satis�es the conditions of the lemma.Next, we address the asymptotic estimates of U1, U2, and U3. We intro-duce the spaces Xs;T and Ys;T (s > 0, T > 0) of real-valued functions u de�nedon R� [0;1)� [0; T ],Xs;T = fu : supfk@k�@�t @�xu(� ; t; � )kL2(R) : t 2 [0;1); � 2 [0; T ]g <1g; (3.21)Ys;T = fu : limt!1 t�1 supfk@k� @�t @�xu(� ; t; � )kL2(R) : � 2 [0; T ]g = 0g; (3.22)for all �, �, and k such that � + � + 2k = s and 12s � k � 0. The followinglemma is taken from [6, Proposition 5].Lemma 3.5 If (@t + v@x)u = f 2 Xs;T and Gvf = 0, then u 2 Ys;T .Lemma 3.5 enables us to establish the desired asymptotic estimates.15



Lemma 3.6 If U01 2 Hs(R), then U1 2 Xs;T , QU2 2 Xs�1;T , PU2 2 Ys�2;T ,and QU3 2 Ys�3;T .Proof. The �rst assertion is an immediate consequence of the construction ofU1 (Lemma 3.4) and the de�nition of the space Xs;T . Equation (3.9) de�nesQU2 2 Xs�1;T . Then Eq. (3.19) de�nes PjU2 for j = 1; : : : ; k. The inhomoge-nous term Sj in Eq. (3.19) averages to zero along the characteristic determinedby vj, GvjSj = 0, so PjU2 2 Ys�2;T for each j. Hence, PU2 2 Ys�2;T . Equa-tion (3.20) de�nes QU3 2 Ys�3;T .3.3 Convergence ProofGiven any U0 2 H5(R), we de�ne U01 = PU0 and construct U1 � U1(x; t; � )in accordance with Lemma 3.4 and U2 � U2(x; t; � ) and QU3 = QU3(x; t; � ) inaccordance with Lemma 3.6. Our goal in this section is to prove that thereexists a solution U � U(x; t) of Eq. (3.1) satisfying U(� ; 0) = U0 such thatU(� ; t)� U1(� ; t; "t)! 0 on [0; T="] in a suitable norm.Theorem 3.1 Let Hypotheses 1{4 be satis�ed. For any U0 2 H5(R), thereexists a T > 0, which does not depend on ", such that Eq. (3.1) has a uniquesolution U 2 C([0; T="];H1(R)) satisfying U(� ; 0) = U0. Furthermore,supfkPU(� ; t)� U1(� ; t; "t)kH1 : t 2 [0; T="]g = o(1) as " # 0; (3.23)supfkQU(� ; t)kH2 : t 2 [t0; T="]g = o(1) as " # 0; for any t0 > 0; (3.24)1" Z T="0 kQU(� ; t)kH2 dt = o(1): (3.25)Proof. We introduce the function Ua � Ua(x; t; � ) on R� [0; T="]� [0; T ] bythe de�nition Ua = U1 + "U2 + "2QU3: (3.26)16



Because the variable � is restricted to the compact interval [0; T ], it does notplay a critical role. Without loss of generality we may make the identi�cation� = "t and consider U1, U2 and QU3, as well as Ua, as functions of x and t onR� [0; T="].By assumption, U1 2 H5(R), so Lemma 3.6 gives the asymptotic estimateskU1kH1 = O(1); kQU2kH1 = O(1); "kPU2kH1 = o(1); "kQU3kH1 = o(1):(3.27)It follows that kPUakH1 = O(1) and kQUakH1 = O("). The estimates holduniformly on [0; T="].The proof of Theorem 3.1 consists of several steps; each step is summa-rized in a lemma.Lemma 3.7 The function Ua satis�es a di�erential equation,@tUa +A@xUa + "�1LUa = B(Ua; Ua) + "T (Ua; Ua; Ua) + "r1 +Qr2; (3.28)where kr1kX , kr2kX = o(1), X = L1([0; T="];H1(R)), as " # 0.Proof. The function Ua satis�es the following di�erential equation:@tUa +A@xUa + "�1LUa = B(Ua; Ua)� "2B(U2; U2)� 2"2B(U1; QU3)� 2"3B(U2; QU3)� "4B(QU3; QU3) + "T (Ua; Ua; Ua)� 3"2T (U1; U1; U2)� 3"3T (U1; U2; U2)� 3"3T (U1; U1; QU3)� "4T (U2; U2; U2)� 6"4T (U1; U2; QU3)� 3"5T (U1; QU3; QU3)� 3"5T (U2; U2; QU3)� 3"6T (U2; QU3; QU3)� "7T (QU3; QU3; QU3)+ "2[@tQU3 +A@xQU3]: (3.29)Using Eq. (3.27), we estimate each term that does not involve Ua. The termB(U2; U2) is special because of Hypothesis 3,B(U2; U2) = 2PB(PU2; QU2) + PB(QU2; QU2) +QB(U2; U2): (3.30)17



Hence, "2B(U2; U2) = "p1 +Qp2; (3.31)where kp1kX, kp2kX = o(1) as " # 0. The remaining terms are easy to estimate;they are all at least o("). The assertion of the lemma follows.Lemma 3.8 For any U0 2 H4(R), there exist a T > 0 and a unique func-tion U 2 C([0; T="];H1(R)) that satis�es Eq. (3.1) on [0; T="] and the initialcondition U(� ; 0) = U0. The di�erence V = U � Ua satis�es a di�erentialinequalityddtkV (t)k2H1 + "�1kQV k2H1� "C [kV k2H1 + kV k4H1 + jjUajjH1kV k3H1 + o(1)] ; t 2 (0; T="]; (3.32)for some positive constant C that does not depend on ".Proof. If U satis�es Eq. (3.1) and Ua satis�es Eq. (3.28), then V satis�es theequation@tV +A@xV + "�1LV = B(V; V ) + 2B(Ua; V ) + "T (V; V; V )+ 3"T (Ua; V; V ) + 3"T (Ua; Ua; V )� ("r1 +Qr2): (3.33)We take the scalar product of both sides of this equation with V and �@2xV ,add the two equations, and integrate the resulting equation over R,12 ddtkV (t)k2H1 + "�1((LV; V )) = ((B(V; V ); V )) + 2((B(Ua; V ); V ))+ "((T (V; V; V ); V )) + 3"((T (Ua; V; V ); V )) + 3"((T (Ua; Ua; V ); V ))� (("r1 +Qr2; V )): (3.34)Here, ((� ; �)) denotes the H1-inner product, ((u; v)) = RR((u � v) + (@xu �@xv))(x) dx for u; v 2 [H1(R)]n. 18



We estimate each term in the right member. Again, the transparency ofB on ker(L) plays a critical role: any product ((B(u; v); w)) is estimated by asum of terms, each of which contains at least one of Qu, Qv, and Qw,j((B(u; v); w))j � C(kQukH1kvkH1kwkH1 + kukH1kQvkH1kwkH1+ kukH1kvkH1kQwkH1); u; v; w 2 [H1(R)]n:Thus we �nd that there exists a positive constant C that does not depend on" such that12 ddtkV (t)k2H1 + "�1((LV; V ))� C [kV k2H1kQV kH1 + kQUakH1kV k2H1 + kUakH1kV kH1kQV kH1+ " (kV k4H1 + kUakH1kV k3H1 + kUak2H1kV k2H1)+"kr1kH1kV kH1 + kr2kH1kQV kH1] : (3.35)Hypothesis 2 enables us to estimate the left member from below, replacing theterm ((LV; V )) by CkQV k2H1. We estimate the right member from above bymeans of Young's inequality, absorbing every term involving kQV kH1 in theleft member. (At this step we make use of the fact that kQUakH1 = O(").)The di�erential inequality (3.32) follows.The convergence does not follow from Lemma 3.8, since V (� ; 0) does nottend to zero as " # 0. As a matter of fact, PU(� ; 0) = PU1(� ; 0) + o(1) =U1(� ; 0) + o(1), so PV (� ; 0) = o(1) as " # 0. But QU(� ; 0) is not necessarilyzero, so we can conclude only that QV (� ; 0) = O(1).Lemma 3.9 There exists a positive constant C that does not depend on " suchthatsupfkV (t)kHi : t 2 [0; T="]g � C; 1" Z T="0 kQV (t)k2Hi(t) dt � C; i = 1; 2:(3.36)19



Proof. The estimates in H1 follow from Lemma 3.8; those in H2 followsimilarly, because U1(� ; 0) 2 H5(R).Lemma 3.10 For any t0 > 0 that does not depend on ",supfkPV (t)kH1 : t 2 [0; t0]g = o(1): (3.37)Proof. We apply P to Eq. (3.33),@tPV + PA@x(PV +QV ) = PB(V; V ) + 2PB(Ua; V )+ "PT (V; V; V ) + 3"PT (Ua; V; V ) + 3"PT (Ua; Ua; V )� "Pr1; (3.38)and take the H1 inner product with PV ,12 ddtkPV (t)k2H1 + ((PA@xQV;PV )) = ((PB(V; V ); PV ))+ 2((PB(Ua; V ); PV )) + "((PT (V; V; V ); PV )) + 3"((PT (Ua; V; V ); PV ))+ 3"((PT (Ua; Ua; V ); PV ))� "((Pr1; PV )): (3.39)Again, because of the transparency of B on ker(L),j((PB(V; V ); PV ))j � C(kPV kH1kQV kH1 + kQV k2H1)kPV kH1;j((PB(Ua; V ); PV ))j � C(kUakH1kQV kH1 + kQUakH1kV kH1)kPV kH1;soddtkPV (t)k2H1 � C hkQV kH2kPV kH1 + kPV k2H1kQV kH1+ kQV k2H1kPV kH1 + kUakH1kQV kH1kPV kH1 + kQUakH1kV kH1kPV kH1+"kV k4H1 + "kUakH1kV k3H1 + "kUak2H1kV k2H1 + "kr1kH1kPV kH1] : (3.40)It follows from Lemma 3.9 that kV (t)kH1 is bounded on [0; T="]. We alreadyknow that kUakH1 is bounded and kQUakH1 = O("), soddtkPV (t)k2H1 � C [(kQV jjH2 + kQV kH1)kPV kH1 + "] : (3.41)20



Applying Young's inequality, we obtain the di�erential inequalityddtkPV (t)k2H1 � kPV k2H1 + C h(kQV k2H2 + kQV k2H1) + "i : (3.42)According to Lemma 3.9,Z T="0 hkQV (t)k2H1 + kQV (t)k2H2i dt � C": (3.43)Applying Gronwall's lemma to Eq. (3.42), we obtain the estimatekPV (t)k2H1 � kPV (0)k2H1et0 + C"; t 2 [0; t0]; (3.44)for any t0 > 0 that does not depend on ". The lemma follows, becausekPV (0)kH1 = "kPU2(0)kH1 = o(1).We now complete the proof of Theorem 3.1.According to Lemma 3.9, R t00 kQV (t)k2H1 dt � C", so kQV (t1)k2H1 � 2C"for some t1 2 (0; t0). Using this estimate and Lemma 3.10, we conclude thatkV (t1)kH1 = o(1). On [t1; T="], V satis�es the asymptotic di�erential equationddtkV (t)k2H1 + "�1kQV k2H1 = o("): (3.45)Hence, kV (t)kH1 = o(1) on [t1; T="]. The proof of the theorem is complete.4 The Landau{Lifshitz{Maxwell EquationsWe now return to Eq. (2.17) and the system of partial di�erential equationsof micromagnetics, Eqs. (2.13){(2.15).As we observed in Section 2.2, Eq. (2.17) is a special case of the generalequation (3.1). (In fact, Eq. (2.17) provided the motivation for the analysis of21



Section 3.) Hypotheses 1{3 are satis�ed (see Section 2.3); we will verify the re-maining Hypothesis 4 once we have found the coe�cients Dj . The asymptoticapproximation is therefore unique and valid on the slow time scale. How theasymptotic approximation is actually constructed is irrelevant. This observa-tion is important because it allows us to use the Landau{Lifshitz equation inthe form given by Gilbert [2],@tM = �(M �H) + gjM j (M � @tM) : (4.1)This equation, which is known as the Landau{Lifshitz{Gilbert (LLG) equa-tion, is equivalent with the LL equation (2.1), except for a rescaling of timeby a factor 1 + g2. As it turns out, the LLG equation is more convenient forconstructing the asymptotic expansions.We need to make one more change. In Section 2.1, we introduced a simpli-�cation of the mathematicalmodel, replacing the term jM j in the denominatorof the damping term by jM0j; see the discussion following Eq. (2.11). We makethe same simpli�cation in Eq. (4.1) and take the factor multiplying the damp-ing term to be g. Thus, we start from the following system of equations:"@tM + "2@�M = �(M0 �H) + ��1(M0 �M)� "(M �H)+ g["(M0 � @tM) + "2(M0 � @�M) + "2(M � @tM) + "3(M � @�M)]; (4.2)"@tH + "2@�H � "k � @xE = �"@tM � "2@�M; (4.3)"@tE + "2@�E + "k � @xH = 0: (4.4)Note that the exponent of " in this system is 1 more than in Eq. (3.1). Thereis no need to symmetrize the equations.We construct an asymptotic solution of Eqs. (2.13){(2.15) along the linesof Section 3.1, M =M1 + "M2 + "2M3 + � � � ; (4.5)22



H = H1 + "H2 + "2H3 + � � � ; (4.6)E = E1 + "E2 + "2E3 + � � � : (4.7)4.1 The Equations of Order O(1).To leading order, Eqs. (4.2){(4.4) reduce to a single equation,�M0 � (H1 � ��1M1) = 0: (4.8)The equation gives an expression for M1 in terms of M1 �M0 and H1,M1 = (M1 �M0)M0 � �M0 � (M0 �H1): (4.9)4.2 The Equations of Order O(").To �rst order, Eqs. (4.2){(4.4) yield a set of di�erential equations,@tM1 = �M0 � (H2 � ��1M2 � g@tM1)�M1 �H1; (4.10)@tH1 � k � @xE1 = �@tM1; (4.11)@tE1 + k � @xH1 = 0: (4.12)Taking the scalar product of Eq. (4.10) with M0 and adding to it the scalarproduct of Eq. (4.8) with M1, we �nd that @t(M1 �M0) = 0, soM1 �M0 = f0; f0 � f0(x; � ): (4.13)(Note that M1 �M0 is the O(") term in the expansion of jM j2, which is con-stant.) If, instead of the scalar product, we take the vector product, we obtainan expression for M2 in terms of M2 �M0 and H2,M2 = (M2 �M0)M0 � �M0 � (M0 �H2) + �M0 � q; (4.14)23



where the vector q is given in terms of M1 and H1,q = �@tM1 + gM0 � @tM1 �M1 �H1: (4.15)We substitute the expression (4.9) in the right member of Eq. (4.11), use thefact that @t(M1 �M0) = 0, and solve the resulting equation for @tH1 to obtaina system of equations for H1 and E1,@tH1 + �1 + �(k � (M0 � @xE1))M0 � 11 + �k � @xE1 = 0; (4.16)@tE1 + k � @xH1 = 0: (4.17)4.2.1 Choice of CoordinatesThe system of Eqs. (4.16), (4.17) is most easily solved if we adopt a coordinatesystem in R3 that is spanned by k, k �M0, and M0. (Here, we rely on theassumption that k and M0 are not parallel or antiparallel.) Given any vectorv 2 R3, we de�neva = v �M0; vb = v � (k �M0); vc = v � k; v 2 R3: (4.18)Thenv = 11 � k2a [(va � kavc)M0 + vb(k �M0) + (vc � kava)k] ; v 2 R3; (4.19)where ka =M0 � k: (4.20)An easy computation shows thatu � v = 11 � k2a [uava + ubvb + ucvc � ka(uavc + ucva)]; u; v 2 R3; (4.21)u� v = 11 � k2a ����������� M0 k �M0 kua ub ucva vb vc ����������� ; u; v 2 R3: (4.22)24



The system of Eqs. (4.16), (4.17) becomes@tu1 +K@xu1 = 0; (4.23)where u1 = (H1a;H1b;H1c; E1a; E1b; E1c)t andK = 0BBBBBBBBBBBBBBB@ 0 0 0 0 1 00 0 0 �(1 + �)�1 0 ka(1 + �)�10 0 0 0 ka�(1 + �)�1 00 �1 0 0 0 01 0 �ka 0 0 00 0 0 0 0 0
1CCCCCCCCCCCCCCCA : (4.24)The derivatives in Eq. (4.23) are taken componentwise.4.2.2 Solution of Equation (4.23)The characteristic determinant of K isdet(�I �K) = (�2 � v20)(�2 � v21)(�2 � v22); (4.25)where v0 = 0; v1 = � 11 + ��1=2 ; v2 =  1 + (1 � k2a)�1 + � !1=2 ; (4.26)so the eigenvalues of K are v0 = 0 (algebraic multiplicity 2), �v1, and �v2.Note that v0 < v1 < v2; furthermore,1� v22 = k2a(1 � v21): (4.27)25



In terms of v1 and v2, we haveK = 0BBBBBBBBBBBBBBB@ 0 0 0 0 1 00 0 0 �v21 0 kav210 0 0 0 ka(1 � v21) 00 �1 0 0 0 01 0 �ka 0 0 00 0 0 0 0 0
1CCCCCCCCCCCCCCCA : (4.28)The matrix K is diagonalized by the linear transformation F ,K = F�1V F; V = diag(v0; v0; v1;�v1; v2;�v2); (4.29)where F = 0BBBBBBBBBBBBBBB@ ka(1 � v�21 ) 0 v�21 0 0 00 0 0 0 0 10 1 0 �v1 0 kav10 1 0 v1 0 �kav1v�12 0 �kav�12 0 1 0�v�12 0 kav�12 0 1 0
1CCCCCCCCCCCCCCCA ; (4.30)

F�1 = 0BBBBBBBBBBBBBBB@ kav21v�22 0 0 0 12v�12 �12v�120 0 12 12 0 0v21v�22 0 0 0 12ka(1 � v21)v�12 �12ka(1� v21)v�120 ka �12v�11 12v�11 0 00 0 0 0 12 120 1 0 0 0 0
1CCCCCCCCCCCCCCCA :(4.31)Applying F to both members of Eq. (4.23), we obtain a diagonal system,(@t + V @x)Fu1 = 0: (4.32)(This system corresponds to Eq. (3.8).) The equations are decoupled, andeach equation can be integrated along its characteristics. Upon application of26



the inverse transformation F�1 we �ndu1 = F�1f; (4.33)where u1 = 0BBBBBBBBBBBBBBB@ H1aH1bH1cE1aE1bE1c
1CCCCCCCCCCCCCCCA ; f = 0BBBBBBBBBBBBBBB@ f1f2f3f4f5f6

1CCCCCCCCCCCCCCCA ; f1 � f1(x; � );f2 � f2(x; � );f3 � f3(x� v1t; � );f4 � f4(x+ v1t; � );f5 � f5(x� v2t; � );f6 � f6(x+ v2t; � ): (4.34)The functions f1 and f2 represent standing waves; f3 and f4 are travelingwaves propagating with the velocity v1 and �v1, respectively; and f5 and f6are traveling waves propagating with the velocity v2 and �v2, respectively.The components of M1 are found from Eqs. (4.9), (4.13), and (4.33),M1a = f0; M1b = 1 � v212v21 (f3+f4); M1c = kaf0+ v22 � v21v22 f1�ka1� v212v2 (f5�f6):(4.35)This completes the analysis of the �rst-order approximation. We now knowthat the coe�cients of order 1 in the expansions (4.5), (4.6), and (4.7) arelinear combinations of standing (v0 = 0) and traveling waves (�v1, �v2). Inthe next section we will see how the pro�le functions f0; : : : ; f6 evolve on theslow time scale (that is, as a function of � ).4.3 The Equations of Order O("2)To second order, Eqs. (4.2){(4.4) yield the di�erential equations@tM2 + @�M1 = �M0 � �H3 � ��1M3 � g@tM2 � g@�M1�27



�M1 � (H2 � g@tM1)� (M2 �H1); (4.36)@tH2 + @�H1 � k � @xE2 = � (@tM2 + @�M1) ; (4.37)@tE2 + @�E1 + k � @xH2 = 0: (4.38)We follow the same procedure as in the preceding section. First, we takethe scalar product of Eq. (4.36) with M0 and add to it the scalar product ofEq. (4.10) with M1 and the scalar product of Eq. (4.8) with M2. The result is@t(M2 �M0 + 12 jM1j2) + @�(M1 �M0) = 0: (4.39)Recall Eq. (4.13): M1 � M0 = f0, where f0 does not depend on t. Hence,Eq. (4.39) implies that M2 �M0 + 12jM1j2 grows linearly with t as t ! 1,unless f0 is independent not only of t but also of � . We avoid this type ofsecular behavior by imposing the condition f0 � f0(x). If M1 �M0 = 0 att = 0, then this condition gives f0 � 0; (4.40)and the expressions (4.35) simplify,M1a = 0; M1b = 1� v212v21 (f3 + f4); M1c = v22 � v21v22 f1 � ka1� v212v2 (f5 � f6):(4.41)IfM1 andM0 are not orthogonal at t = 0, a constant nonzero component mustbe added to M1a, M1c, and the quantities derived from them.The scalar product of Eq. (4.36) with M0 thus yields the relation2M2 �M0 + jM1j2 = f20; f20 � f20(x; � ): (4.42)(Note that 2M2 �M0+ jM1j2 is the O("2) term in the expansion of jM j2, whichis constant.) If, instead of the scalar product, we take the vector product ofEq. (4.36) with M0, we obtain an expression for M3 in terms of H3 (as well asH2 and H1),M3 = (M3 �M0)M0 + (1� v�21 )M0 � (M0 �H3)� (1 � v�21 )M0 � q2; (4.43)28



where q2 = �@tM2 � @�M1 + gM0 � @tM2 + gM0 � @�M1 (4.44)+ gM1 � @tM1 �M1 �H2 �M2 �H1: (4.45)We substitute the expression (4.14) in the right member of Eq. (4.37) andsolve the resulting equation for @tH2 to obtain a system of equations for H2and E2, @tH2 + (1 � v21)(k � (M0 � @xE2))M0 � v21k � @xE2= (1 � v21)(M0 � vH)M0 + v21vH; (4.46)@tE2 + k � @xH2 = vE: (4.47)The vectors vH and vE are known,vH = �@�(H1 +M1) + @t[12jM1j2M0 � �M0 � q]; (4.48)vE = �@�E1: (4.49)Here, q is the vector de�ned in Eq. (4.15).4.3.1 Coordinate RepresentationWe use the coordinate system introduced in Section 4.2.1, with the abbrevi-ations de�ned in Eq. (4.18). Equations (4.46) and (4.47) correspond to thefollowing system of equations:@tu2 +K@xu2 = �@�F�1f + @tr; (4.50)
29



where K is the matrix de�ned in Eq. (4.24), f is the vector f = (f1; : : : ; f6)t,and u2 and r stand for the vectorsu2 = 0BBBBBBBBBBBBBBB@ H2aH2bH2cE2aE2bE2c
1CCCCCCCCCCCCCCCA ; r = 0BBBBBBBBBBBBBBB@ 12 jM1j2(1 � v21)qc12kajM1j2 � (1� v21)qb000

1CCCCCCCCCCCCCCCA : (4.51)The elements of r are known (in terms of f1 and f3 through f6; f2 does notenter). Notice, however, that f1 does not depend on t and that the derivativesof f3 through f6 with respect to t can be expressed in terms of their derivativeswith respect to x; see Eq. (4.33). Thus,jM1j2 = 11� k2a "(v22 � v21)2v42 f21 � ka (v22 � v21)(1 � v21)v32 f1(f5 � f6)+ (1� v21)24v41 (f3 + f4)2 + (1 � v21)(1� v22)4v22 (f5 � f6)2# ; (4.52)qb = �kav21(v22 � v21)v42 f21 + v21(1� v22)� (v22 � v21)2v32 f1(f5 � f6) + ka1� v214v22 (f5 � f6)2+ 1� v212v1 @x(f3 � f4)� 12gka(1 � v21)@x(f5 + f6); (4.53)qc = ka1� v212v22 f1(f3 + f4) + 1 � v214v21v2 (f3 + f4)(f5 � f6)� g1� v212v1 @x(f3 � f4)� 12ka(1� v21)@x(f5 + f6): (4.54)4.3.2 Solution of Equation (4.50)We apply the transformation F de�ned in Eq. (4.30) to both sides of Eq. (4.50)and absorb the t-derivative term in the left member, compensating with an xderivative in the right member,(@t + V @x)F (u2 � r) = �@�f � @xV Fr: (4.55)30



Because V is diagonal, Eq. (4.55) decouples into six �rst-order hyperbolicequations with constant coe�cients, which can be integrated along their char-acteristics. If the solution is to remain bounded, the right member must besuch that it does not lead to secular behavior. This condition imposes con-straints, which we can �nd by following the averaging strategy of Section 3.1,Lemma 3.2.We decompose V Fr, separating the terms that are constant along thecharacteristics from those that are not,V Fr = �D1@xf +D2f2 + w: (4.56)The �rst two terms are constant along the characteristics; D1 and D2 are diag-onal matrices with nonnegative entries that are readily found from Eqs. (4.52),(4.53), and (4.54),D1 = 12g(1 � v21)2 diag(0; 0; 1; 1; 1; 1); (4.57)D2 = 3(1 � v21)(1� v22)8v22 diag(0; 0; 0; 0; 1; 1); (4.58)f2 is the vector whose entries are the squares of the entries of f ,f2 = (f21 ; f22 ; f23 ; f24 ; f25 ; f26 )t: (4.59)The remainder w consists exclusively of terms that vary along the character-istics: its �rst and second components involve at least one of f3 through f6,its third component at least one of f1 and f4 through f6, and so on. Thus,Eq. (4.55) becomes(@t + V @x)F (u2� r) = �[@�f �D1@2xf +D2@xf2] + w: (4.60)Application of the averaging operator to each component yields the equation@�f �D1@2xf +D2@xf2 = 0: (4.61)31



Thus, a necessary condition for the solution of Eq. (4.55) to remain boundedfor long times as " # 0 is that the �rst-order pro�le functions f1 through f6satisfy a heat equation on the (slow) time scale of � . The equations for f1and f2 are particularly simple: @�f1 = 0, @�f2 = 0, so f1 and f2 must beconstant on the slow time scale, and we have f1 � f1(x) and f2 � f2(x).The equations for f3 and f4 are linear, those for f5 and f6 nonlinear with aquadratic nonlinearity.Remark. Equation (4.61) corresponds to Eq. (3.18). The nonzero entries ofD1 are positive, and the equations for f1 and f2, which involve the zero entriesof D1, are trivial. This observation validates Hypothesis 4.If the condition (4.61) is satis�ed, Eq. (4.60) reduces to(@t + V @x)F (u2 � r) = w; (4.62)from which we obtain the solution u2 of Eq. (4.50),u2 = r + F�1(f2 + (@t + V @x)�1w): (4.63)Here, (@t + V @x)�1 denotes the integral along characteristics, andu2 = 0BBBBBBBBBBBBBBB@ H2aH2bH2cE2aE2bE2c
1CCCCCCCCCCCCCCCA ; f2 = 0BBBBBBBBBBBBBBB@ f21f22f23f24f25f26

1CCCCCCCCCCCCCCCA ; f21 � f21(x; � );f22 � f22(x; � );f23 � f23(x� v1t; � );f24 � f24(x+ v1t; � );f25 � f25(x� v2t; � );f26 � f26(x+ v2t; � ): (4.64)In addition, we have the expressionM2a = 12(f20�jM1j2), where f20 � f20(x; � );see Eq. (4.42). The remaining components of M2 follow from Eq. (4.14),M2b = �(H2b � qc); M2c = kaM2a + �(H2c � kaH2a + qb): (4.65)This completes the construction of the asymptotic approximation.32



5 Numerical ResultsIn this section we illustrate the analytical results of the preceding section withthe results of some numerical computations. The computations are done in aCartesian (x; y; z) coordinate system. The (x; y; z) coordinates are obtainedfrom the (a; b; c) coordinates (Eq. (4.18)) by applying the matrixT = 1sin� 0BBBBB@ 0 0 sin�1 0 � cos �0 1 0 1CCCCCA : (5.1)The basic solution is given byM0 = 0BBBBB@ cos �sin�0 1CCCCCA ; H0 = 0BBBBB@ cos �sin�0 1CCCCCA ; E0 = 0BBBBB@ 000 1CCCCCA ; (5.2)for some � 2 (0; �). At t = 0, we perturb this basic solution near the origin.The perturbation is uniform in y and z, sharply peaked near the origin in x,M(x; 0) = H(x; 0) = E(x; 0) = e�20x2 0BBBBB@ 123 1CCCCCA : (5.3)With k = (1; 0; 0)t, we have ka = cos�, while k �M0 falls along the z axis.When we apply the transformation T to Eqs. (4.33), (4.34), and (4.35), theasymptotic analysis gives the following expressions for M , H, and E:M � 0BBBBB@ v22�v21v22 f1 � (1�v21) cos�2v2 (f5 � f6)� (v22�v21) cos�v22 sin� f1 + 1�v222v2 sin�(f5 � f6)1�v212v21 sin�(f3 + f4) 1CCCCCA ; (5.4)H � 0BBBBB@ v21v22 f1 + (1�v21) cos�2v2 (f5 � f6)v22 sin�(f5 � f6)12 sin�(f3 + f4) 1CCCCCA ; E � 0BBBBB@ f2� 12v1 sin�(f3 � f4)12 sin�(f5 + f6) 1CCCCCA : (5.5)33



Here, v1 = � 11 + ��1=2 ; v2 =  1 + � sin2 �1 + � !1=2 : (5.6)The functions f1 and f2 are independent of time; f3, f4, f5, and f6 representpropagating waves traveling with the velocities v1, �v1, v2, and �v2, respec-tively. Thus, leading-order asymptotics predict that Ex is constant in time;Mz, Hz , and Ey split into waves traveling at the velocities �v1; Hy and Ezsplit into waves traveling at the velocities �v2; and Mx, My, and Hx combinea standing wave with waves traveling at the velocities �v2.5.1 Numerical ResultsAll computations reported in this section refer to the case " = 0:01 and g = 1.We use a �nite-di�erence approximation on a uniform mesh on an interval�L � x � L with 2N + 1 mesh points. With an implicit treatment of thelinear terms and an explicit treatment of the nonlinear terms, the computationrequires the factorization of a (sparse) matrix of dimension 9(2N + 1).Figure 1 shows the x, y, and z components (top to bottom) of M , H,and E (left to right) vs. x (measured along the front) and t (increasing towardthe back), for � = 1 and � = 13�. They display the features predicted bythe asymptotic theory. We see standing waves and waves traveling with thevelocities v1 = 0:69 and v2 = 0:91. The speci�c wave con�guration dependson the initial data. In fact, by changing the initial data for the individualcomponents we can change a positive wave into a negative wave or vice versa.A variation of the angle �, changing the direction of the basic solution (5.2)in the (x; y) plane, does not a�ect the velocity of the slower waves (v1); onthe other hand, the velocity of the faster waves (v2) increases with � until itis close to 1 when � = 12�. 34
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